Fine Tuning of a Type 1 Interferon Antagonist
نویسندگان
چکیده
Type I interferons are multi-potent cytokines that serve as first line of defense against viruses and other pathogens, posses immunomudolatory functions and elicit a growth inhibitory response. In recent years it has been shown that interferons are also detrimental, for example in lupus, AIDS, tuberculosis and cognitive decline, highlighted the need to develop interferon antagonists. We have previously developed the antagonist IFN-1ant, with much reduced binding to the IFNAR1 receptor and enhanced binding to IFNAR2. Here, we further tune the IFN-1ant by producing three additional antagonists based on IFN-1ant but with altered activity profiles. We show that in all three cases the antiproliferative activity of interferons is blocked and the induction of gene transcription of immunomudolatory and antiproliferative associated genes are substantially decreased. Conversely, each of the new antagonists elicits a different degree of antiviral response, STAT phosphorylation and related gene induction. Two of the new antagonists promote decreased activity in relation to the original IFN-1ant, while one of them promotes increased activity. As we do not know the exact causes of the detrimental effects of IFNs, the four antagonists that were produced and analyzed provide the opportunity to investigate the extent of antagonistic and agonistic activity optimal for a given condition.
منابع مشابه
Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage
Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammator...
متن کاملThe Fine-Tuning of the Universe for Intelligent Life
The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of...
متن کاملMaximizing Production of Human Interferon-γ in HCDC of Recombinant E. coli
Tuning recombinant protein expression is an approach which can be successfully employed for increasing the yield of recombinant protein production in high cell density cultures. On the other hand, most of the previous results reported the optimization induction conditions during batch and continuous culture of recombinant E. coli, and consequently fed-batch culture have received less attention....
متن کاملComparison of Wild Type and Mutated (mHuIFN-β 27-101) Interferon Binding to the IFNRA Receptor by Molecular Docking
Introduction: Interferon beta is one of the members of type I interferons. Creating R27T and V101F mutations is one of the important researches performed to improve function, decrease immunogenicity, increase expression and increase half-life of interferon beta. In this study, the effects of R27T and V101F mutations on interferon beta binding to interferon receptors were studied by molecular do...
متن کاملComparison of Wild Type and Mutated (mHuIFN-β 27-101) Interferon Binding to the IFNRA Receptor by Molecular Docking
Introduction: Interferon beta is one of the members of type I interferons. Creating R27T and V101F mutations is one of the important researches performed to improve function, decrease immunogenicity, increase expression and increase half-life of interferon beta. In this study, the effects of R27T and V101F mutations on interferon beta binding to interferon receptors were studied by molecular do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015